COMPLEMENTOS MATEMÁTICOS PARA LA INGENIERÍA INDUSTRIAL Septiembre. Modelo A

INSTRUCCIONES: Lea atentamente los enunciados. Conteste a las preguntas cortas exclusivamente en el espacio disponible a continuación del enunciado. Desarrolle la solución a los ejercicios 5 y 6 en otra hoja de examen, en el espacio que necesite. Se permite el uso de calculadora no programable, si la calculadora no tiene más de dos líneas de salida.

PREGUNTAS CORTAS

1. (1 PUNTO) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la función definida como

$$f(x,y) = (x - y^2, x^2 - y).$$

¿Tiene inversa local diferenciable en un entorno de (0,1)?

Solución:

2. (1 PUNTO) Sea C la curva dada por la intersección de las superficies $z=x^2+y$ y x-z=2. Determine la ecuación de su plano osculador en el punto (4,0,2).

Solución:

3. (1 PUNTO) Sea C una curva parametrizada por la longitud de arco y ecuación dada por $\mathbf{x} = \mathbf{x}(s) = \mathbf{x}(u(s), v(s))$, que está contenida en una superficie. Sea $\mathbf{k}(s)$ el vector curvatura de la curva. Defina, a partir de él, vector curvatura normal $\mathbf{k}_n(s)$ y vector curvatura geodésica $\mathbf{k}_g(s)$.

Solución:

Solución (continuación):

4. (1 PUNTO) Considere el toro dado por la siguiente ecuación paramétrica.

$$\mathbf{x}(u,v) = ((\cos u + 2)\cos v, (\cos u + 2)\sin v, \sin u).$$

Clasifique el punto $(2,0,1) = \mathbf{x}(\frac{\pi}{2},0)$.

Solución:

EJERCICIOS

5. (3 PUNTOS) Sea C la curva dada por la ecuación paramétrica:

$$\mathbf{x}(t) = 2e^t(\cos t, \sin t),$$

para $t \in \mathbb{R}$. Es una espiral logarítmica.

- a) Obtenga la longitud de arco partiendo de t = 0.
- b) Parametrice por la longitud de arco.
- c) Obtenga la curvatura en el punto $\mathbf{x}(0)$.

Nota: Cada apartado vale 1 punto.

- 6. (3 PUNTOS) Sea C la curva de Bézier cuyo polígono de control es (0,1,1), (1,2,0), (1,0,2), (0,-1,2).
 - a) Escriba su ecuación $\mathbf{x}(t)$, para $t \in [0, 1]$.
 - b) Determine la curvatura en el punto correspondiente a t=1 partiendo de esta parametrización de la curva.
 - c) Determine la recta normal principal en el punto correspondiente a t=1 partiendo de esta parametrización de la curva.

Nota: Cada apartado vale 1 punto.

Curvas

Curvas en el plano no parametrizada por la longitud de arco:

$$k(t) = \det\left(\frac{d\mathbf{x}}{dt}, \left(\frac{d^2\mathbf{x}}{dt^2}\right)\right) \frac{1}{\|d\mathbf{x}/dt\|^3}.$$

Curva en el plano definida por ecuaciones implícitas:

$$k(x,y) = \frac{(-f_y, f_x) H(f) (-f_y, f_x)^t}{\|\nabla f\|^3}.$$

Curvas en el espacio:

$$k(t) = \frac{\|\mathbf{x}'(t) \times \mathbf{x}''(t)\|}{\|\mathbf{x}'(t)\|^{3}},$$

$$\tau(t) = -\frac{\det(\mathbf{x}'(t), \mathbf{x}''(t), \mathbf{x}'''(t))}{\|\mathbf{x}'(t) \times \mathbf{x}''(t)\|^{2}}.$$

Superficies

Formas fundamentales:

$$E = \mathbf{x}_u \cdot \mathbf{x}_u, \quad F = \mathbf{x}_u \cdot \mathbf{x}_v, \quad G = \mathbf{x}_v \cdot \mathbf{x}_v.$$

 $e = \mathbf{N} \cdot \mathbf{x}_{uu}, \quad f = \mathbf{N} \cdot \mathbf{x}_{uv}, \quad g = \mathbf{N} \cdot \mathbf{x}_{vv}.$

Curvaturas:

$$K = \frac{eg - f^2}{EG - F^2},$$

$$H = \frac{Eg - 2Ff + Ge}{2(EG - F^2)}.$$

Ecuación de las curvaturas principales:

$$k^{2}(EG - F^{2}) - (Eg - 2Ff + Ge)k - f^{2} + eg = 0.$$

Ecuación diferencial de las líneas de curvatura:

$$(eF - fE)(du)^{2} + (eG - gE)dudv + (fG - gF)(dv)^{2} = 0.$$

Ecuación diferencial de las líneas asintóticas:

$$e(du)^{2} + 2fdudv + g(dv)^{2} = 0.$$